Aerosol Property Retrieval Algorithm over Northeast Asia from TANSO-CAI Measurements Onboard GOSAT
نویسندگان
چکیده
The presence of aerosol has resulted in serious limitations in the data coverage and large uncertainties in retrieving carbon dioxide (CO2) amounts from satellite measurements. For this reason, an aerosol retrieval algorithm was developed for the Thermal and Near-infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI) launched in January 2009 on board the Greenhouse Gases Observing Satellite (GOSAT). The algorithm retrieves aerosol optical depth (AOD), aerosol size information, and aerosol type in 0.1◦ grid resolution by look-up tables constructed using inversion products from Aerosol Robotic NETwork (AERONET) sun-photometer observation over Northeast Asia as a priori information. To improve the accuracy of the TANSO-CAI aerosol algorithm, we consider both seasonal and annual estimated radiometric degradation factors of TANSO-CAI in this study. Surface reflectance is determined by the same 23-path composite method of Rayleigh and gas corrected reflectance to avoid the stripes of each band. To distinguish aerosol absorptivity, reflectance difference test between ultraviolet (band 1) and visible (band 2) wavelengths depending on AODs was used. To remove clouds in aerosol retrieval, the normalized difference vegetation index and ratio of reflectance between band 2 (0.674 μm) and band 3 (0.870 μm) threshold tests have been applied. To mask turbid water over ocean, a threshold test for the estimated surface reflectance at band 2 was also introduced. The TANSO-CAI aerosol algorithm provides aerosol properties such as AOD, size information and aerosol types from June 2009 to December 2013 in this study. Here, we focused on the algorithm improvement for AOD retrievals and their validation in this study. The retrieved AODs were compared with those from AERONET and the Aqua/MODerate resolution Imaging Sensor (MODIS) Collection 6 Level 2 dataset over land and ocean. Comparisons of AODs between AERONET and TANSO-CAI over Northeast Asia showed good agreement with correlation coefficient (R) 0.739 ± 0.046, root mean square error (RMSE) 0.232 ± 0.047, and linear regression line slope 0.960 ± 0.083 for the entire period. Over ocean, the comparisons between Aqua/MODIS and Remote Sens. 2017, 9, 687; doi:10.3390/rs9070687 www.mdpi.com/journal/remotesensing Remote Sens. 2017, 9, 687 2 of 24 TANSO-CAI for the same period over Northeast Asia showed improved consistency, with correlation coefficient 0.830 ± 0.047, RMSE 0.140 ± 0.019, and linear regression line slope 1.226 ± 0.063 for the entire period. Over land, however, the comparisons between Aqua/MODIS and TANSO-CAI show relatively lower correlation (approximate R = 0.67, RMSE = 0.40, slope = 0.77) than those over ocean. In order to improve accuracy in retrieving CO2 amounts, the retrieved aerosol properties in this study have been provided as input for CO2 retrieval with GOSAT TANSO-Fourier Transform Spectrometer measurements.
منابع مشابه
A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land
Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target (DT) algorithm for GOSAT CAI was developed based on the strategy of the Moderate Resolution Imaging Spectroradiometer (MODIS...
متن کاملDetection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager
The Ultra-Violet Aerosol Index (UVAI) is a practical parameter for detecting aerosols that absorb UV radiation, especially where other aerosol retrievals fail, such as over bright surfaces (e.g., deserts and clouds). However, typical UVAI retrieval requires at least two UV channels, while several satellite instruments, such as the Thermal And Near infrared Sensor for carbon Observation Cloud an...
متن کاملRetrieving XCO2 from GOSAT FTS over East Asia Using Simultaneous Aerosol Information from CAI
In East Asia, where aerosol concentrations are persistently high throughout the year, most satellite CO2 retrieval algorithms screen out many measurements during quality control in order to reduce retrieval errors. To reduce the retrieval errors associated with aerosols, we have modified YCAR (Yonsei Carbon Retrieval) algorithm to YCAR-CAI to retrieve XCO2 from GOSAT FTS measurements using aero...
متن کاملGosat Calibration Plan
Greenhouse gases Observing SATellite (GOSAT) is a Japanese MOE/NIES/JAXA joint program to observe greenhouse gases, such as CO2 and CH4, from space. The GOSAT will be launched in 2008. The GOSAT carries a Fourier transform spectrometer and a push broom imager. The GOSAT development is going on in phase-C/D and characterized the sensor performance in laboratory. The post-launch calibration items...
متن کاملOn-orbit radiometric calibration of SWIR bands of TANSO-FTS onboard GOSAT
The Greenhouse gases Observing SATellite (GOSAT) was launched on 23 January 2009 to monitor global distributions of carbon dioxide and methane. The Thermal And Near-infrared Sensor for carbon ObservationFourier Transform Spectrometer (TANSO-FTS) onboard GOSAT measures the short-wavelength infrared (SWIR) spectra. Radiometric accuracy directly influences the accuracy of the retrieved greenhouse ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017